
CSIS0801 - Final Year Project

SecureDB - A Secure Query Processing
System with data interoperability

Supervisor: Professor Benjamin Kao

Group Member: Lin Haibin

�1

Table of Contents

1. Introduction 3

2. Project Background and Literature Review 4

3. Project Methodology 6
 3.1 Theoretical Background 6
 3.1.1 Encryption Procedure 6
 3.1.2 Secure Operators 7
 3.2 System Architecture 10
 3.2.1 Overall Architecture 10
 3.2.2 System Components 11
 3.3 Query Rewriting 14
 3.3.1 Query Rewriting for Multiplication 14
 3.3.2 Query Rewriting for Addition 15
 3.3.3 Query Rewriting for Subtraction 15
 3.3.4 Query Rewriting for Comparison 16
 3.4 Web Interface 18
 3.4.1 Web Interface for Data Upload 18
 3.4.1 Web Interface for Query 19

4. Experiments and Results 21
 4.1 Experiment Environment 21
 4.2 Experiment Result 22

5. Conclusion and Future Works 25
 5.1 Secure Operator Extension 25
 5.2 Cryptographic Optimization 25
 5.3 Conclusion 26
6. References 27

7. Appendix 28
 7.1 Rewrite Rules for Other Secure Operators 28
 7.2 Experiment Data

�2

1. Introduction

As Database-as-a-service(DBaaS) such as Amazon Web Service and Microsoft Azure gets more

economically available, security issue in the public cloud becomes one of the major concerns of

data owners(DO). Despite the advantages of computation elasticity and scalability provided by the

cloud service provider(SP), data owner cannot afford the risk of having highly sensitive data

compromised on the cloud, such as clients’ credit card information, as the public cloud may be

vulnerable to privileged database administrators and hackers who may gain accesses to disk-

resident data, or learn from the query results requested by DO.

SDB[1] is a secure query processing system that supports data interoperability with secret sharing

encryption scheme, where the output of an operator can be taken as input of another operator, which

leads to a wide range of SQL queries executable by cloud database, without revealing sensitive

information. Besides security, we also demonstrate that SDB is practically efficient.

In this project, we implemented prototype of SDB by query rewriting, on top of Apache Spark.

Specifically, this version of SDB supports the following kind of data interoperable query operations:

• Encryption for integer type data

• Secure operators: addition, subtraction, multiplication, comparison

• Secure aggregation function: count

• Web interface for table creation, data uploading and secure querying

�3

2. Project Background and Literature Review

There exist many approaches tackling the challenge of data security. One common way is to encrypt

data before uploading to the cloud server. For instance, Oracle database 11g provides Transparent

Data Encryption to encrypt disk-resident data, as a service of reliable data storage and

administration. However, as the data is not preserved after conventional encryption, query

processing on encrypted data is impossible and the computational power of cloud service provider

is thus lost. To execute queries, DO has to adopt a Decrypt-Before-Query(DBQ) approach, that is,

shipping all ciphertext to DO, decrypting them before executing queries.

On the other hand, fully homomorphic encryption(FHE) techniques are developed to realize

computation on encrypted data. Despite its theoretical significance, such encryption scheme is too

computationally expensive for practical use, not to mention data-intensive queries on the cloud. For

example, a recent implementation of FHE[2] lets us process 180 AES blocks in around 18 minutes

using 3.7GB RAM, whose running time is far from satisfactory for industry use.

Several partially homomorphic encryption schemes are proposed to process particular types of

operations on encrypted data, such as OPES[3](which supports homomorphic comparison

encryption) and RSA(which supports homomorphic multiplication encryption). However, a simple

selection query such as “uni-cost * quantity < budget” cannot be processed on

encrypted data by piecing different encryption functions together.

TrustedDB[4] and Cipherbase are hardware-based secure processors, which use secure hardware

components to store private keys of sensitive data during processing. However, since security is

�4

dependent on the specific hardware, such secure processors cannot scale up as clusters easily and

have to be replaced in case of hardware failure, which makes them not economically scalable.

CryptDB[5] is a well-known system for processing encrypted data, using an onion encryption

approach, implemented upon MySQL. CryptDB uses different levels of encryptions to support

different security strength and computational support. For example, it uses RSA to allow equality

check on encrypted data, and uses OPES to achieve ordering preserving comparison. Under

CryptDB, data security is gradually released to a level to achieve appropriate computation

requirement. However, some operators of CryptDB are not secure against chosen plaintext attack,

and it’s capable of a limited range of secure operations.

 

SDB is a secure query processing system for relational database, using secret sharing encryption

schema. With the data interoperable secure operators supported by secret sharing encryption, SDB

simulates fully homomorphic encryption for sensitive data stored in database, which leads to a wide

range of queries supported by cloud database server. A typical query “SELECT name, salary

+ 1000 FROM employee WHERE salary * 12 > 100000 AND age < 25”(with

salary being sensitive), which requires addictive, multiplicative and order-preserving

homomorphism, is supported by SDB. Such query will be executed at cloud server first, afterwards

data owner receives the encrypted query result (decrypted values of salary + 1000 and

plaintext of name) and decrypts it to get the original result. This way, SecureDB turns out to be

both secure and efficient.

�5

3. Project Methodology

3.1 Theoretical background

3.1.1 Encryption Procedure

SDB encrypts sensitive data with a secret sharing method per column. The DO maintains the secret

keys of columns while SP maintains the encrypted value of sensitive columns, plaintext of non-

sensitive columns together with some crypto helper columns.

To encrypt data with secret sharing, the DO first generate two secret numbers, g and n. n is the

product of two big random prime numbers ρ1, ρ2, while g is a positive number that is co-prime with

n. We define

Consider a sensitive column A to be encrypted. DO generates a pair of column keys <m, x> for

column A randomly. Also, for each row of column A, DO generates a distinct row-id randomly. We

require that 0 < r, m, x < n.

We use to denote a sensitive value to be encrypted, to denote the ciphertext after encryption,

. to denote the item key of .

The item key is generated by

The encrypted value is computed by

To recover plaintext from ciphertext, we compute

Row-id is encrypted by addictive homomorphic encryption E().

�6

The encryption procedure is illustrated in Figure 2. It shows how sensitive data is transformed into

encrypted values. To reveal the plaintext, DO only needs to store the column keys, while SP

maintains the bulk encrypted data.

3.1.1 Secure Operators

Data interoperability is one of the most important qualities of SDB. Table 1 shows a list of primitive

secure operators implemented in current version of SDB.

�7

Operator expression description

× A × B vector dot product of two columns of the same table

+, − A + B, A − B vector addition/subtraction of two columns of the same table

= A = B equality comparison on two columns of the same table and output a
binary column of ‘0’ and ‘1’

> A > B ordering comparison on two columns of the same table and output a
binary column of ‘0’ and ‘1’

π πS(R) project table R on attributes specified in an attribute set S ⊗

Count Count(R) count the number of rows in a relation

Table 1: list of primitive secure operators

Notice that SDB supports data operability in different modes. For instance, the × operator, can be

applied in three scenarios: operands are both encrypted(EE Mode); one operand is encrypted, the

other is a constant(EC Mode); one operand is encrypted, the other is plain(EP Mode). Besides row-

id, column R(with encrypted values of random number) and column S(with encrypted values of 1’s)

help achieve secure operation.

The protocol for secure multiplication in EE mode, and an illustrative figure are listed above. To

calculate the secure multiplication between two sensitive columns, DO simply generates a new

column key while SP performs expensive computation on bulk data. The encrypted result is then

sent back to DO and decrypted by the new column key. The proof for correctness and security can

be found in [1].

Key update is a helper operator which takes an column A and a target column key <mC, xC> and

output a column C that shares the same plaintext of A with target column key, without revealing

sensitive information. Other protocols of secure operators implemented in SDB are also listed

below.

�8

�9

3.2 System Architecture

3.2.1 Overall Architecture

SDB is implemented as a software-layer on top of Apache Spark. Apache Spark is a fast and general

engine for large-scale data processing, with in-memory primitives that enhance fast cluster

computing. Apache Hadoop serves as the cluster manager and distributed storage system for very

large data sets to support Spark’s cluster computation. Apache Hive is the distributed data

warehouse to store data.

Spark SQL is a component on top of Spark Core that provides support for structured data and SQL

support. Spark SQL supports User-Defined Functions, which provides a mechanism for extending

the functionality of the cluster database server by adding cryptographic function that can be

evaluated in Spark SQL. This way, SDB’s server protocol is pushed to Spark execution engine and

executed as UDFs.

The SDB Proxy resides on client side and stores the secret keys in the key store. A typical life cycle

of a query consists of 5 stages:

1. Application submits a query to SDB proxy.

2. SDB proxy parses, analyses and rewrites the query with SDB UDFs.
�10

Figure 5: Architecture of SDB

3. SDB proxy submits the rewritten query to Spark SQL for server protocol execution.

4. Spark SQL sends back the encrypted query result to SDB proxy.

5. SDB proxy decrypts the query result and sends it back to application.

The advantages of SDB’s architecture include

1. Performance wise

• Secure operators are implemented as UDF which are executed in the same address space of the

SparkSQL, which leads to less memory copy, less network transfer and no IPC.

2. Engineering wise

• SDB leverages the SparkSQL’s optimizer to optimize the server side queries.

• SDB leverages all the normal operators provided by SparkSQL.

• Machine failures of the working nodes, disk-based processing and parallelism are well taken

care of by Spark.

3.2.2 System Components

SDB proxy is composed of 4 major components:

1. SDB Query Parser

2. SDB Semantic Analyser

3. SDB Query Rewriter

4. SDB Query Executor

�11

Figure 7: Components of SDB Proxy

SDB Query Parser parses a query string and transforms it into an abstract syntax tree(AST). It is

built based on HiveQL Parser, with additional tokens for column sensitivity declaration. For

example, to declare a table T with sensitive column A and non-sensitive column B, the user has to

submit query “CREATE TABLE T (A int ENC, B int)”, which is transformed into the

AST in figure 8.

SDB Semantic Analyzer transforms an AST into a Logical Plan Tree(LPT) as the preparation for

query rewrite. The semantic analyser traverses the AST to construct a LPT, which is easier to

manipulate with, and access the key store to

1. verify whether the reference of queried tables and columns are valid

2. annotate a column with its sensitivity and its column key, if any

�12

Figure 9: Transformation from AST to LPT

Figure 8: AST of “CREATE TABLE T (A int ENC, B int)

CREATE TABLE T
(
 A int ENC,
 B int
)

SDB Query Rewriter rewrites the LPT with secure operator, and constructs a Physical Plan

Tree(PPT). While traversing LPT, every time the rewriter identifies a normal arithmetic operator

involving sensitive columns, it replaces the normal operator with the corresponding secure operator,

based on SDB rewrite rule(discussed in detail in next section). Finally the rewrite construct a

physical plan tree for SDB Executor to execute.

SDB Executor executes the physical query plan and returns the result set. Finally, the executor

executes the physical plan tree which normally splits the execution into two phases. In the first

phase, it sends server-side query and waits for query result. In the second phase, it receives server-

side query and decrypts query result. The decrypted result is then sent back to client application via

connector.

�13

getNext()

Figure 9: Transformation from LPT to PPT

3.3 Query Rewriting

We denote ckA = <mA, xA> as the column key for column A, denote κAC = <p, q> as the client-side

result of key update column A with target column key <mC, xC>. Besides, we use ckZ to denote the

special column key <1, 0>.

3.3.1 Query Rewriting for Multiplication

According to the secret sharing scheme, query rewriting for secure multiplication is straightforward.

3.3.2 Query Rewriting for Addition

For secure addition in EE Mode, addition is achieved by applying key update to both A and B so

that they share the same column key.

�14

Function Explanation

rand(ρ1, ρ2) Client-side function which generates a random
number co-prime with n, Φ(n)

key_update_client(ckA, ckC, ckS, ρ1, ρ2) Client-side key update which computes κAC

decrypt(Ce, ckC, n, g, row_id) Client-side decryption which computes ⟦c⟧

sdb_mul(Ae, Be, n) Server-side multiplication (A × B) UDF

sdb_add(Ae, Be, Se, κAC, κBC, n) Server-side addition (A + B as C) UDF

sdb_compare(Ae, n) Server-side comparison (A > 0) UDF

sdb_key_update(Ae, Se, κAC, n) Server-side key update UDF

Table 2: List of functions for query rewriting

Rule 1: Rewrite Rule for Multiplication (EE & EC mode)

For secure addition in EC mode, the expression A+u can be considered as A+(S×u), as the

plaintext of S is 1. Thus an EC addition operation can be done as an EE addition after EC

Multiplication.

3.3.3 Query Rewriting for Subtraction

For secure subtraction in EE Mode, the expression A−B can be considered as A+(B×(-1)),

similar to addition in EC mode. Based on the modular equation -1 mod n == (n − 1) mod n, we

compute the column key of -B as follows.

For secure subtraction in EC mode, the expression A-u can be considered as A-S×u, thus we

simply compute based on the rule of EE subtraction.
�15

Rule 2: Rewrite Rule for Addition (EE mode)

Rule 3: Rewrite Rule for Addition (EC mode)

Rule 4: Rewrite Rule for Subtraction (EE mode)

3.3.4 Query Rewriting for Comparison

For secure comparison in EC mode, the expression A>B can be considered as (A−B)>0, to ensure

no sensitive information is leaked, we randomize the result by R×(A−B)>0 at server side so that

the result of A−B is not revealed.

For secure comparison in EC mode, the expression A>u can be considered as (A−S×u)>0. Notice

that we give the rewriting rule for >, to apply it to = or <, simply swap > with the target equality

operator.

�16

Rule 5: Rewrite Rule for Subtraction (EC mode)

Rule 7: Rewrite Rule for Comparison (EC mode)

Rule 6: Rewrite Rule for Comparison (EE mode)

Figure 10 shows the rewritten physical plan tree of EE Comparison query.

�17

Figure 10: Rewritten LPT of SELECT A FROM T WHERE A > B

3.4 Web Interface

3.4.1 Web Interface for Uploading Data

We introduce the steps to upload a table of sensitive data as follows.

1. In the SQL Editor page, type in the CREATE TABLE query

2. Append keyword “ENC” to every sensitive field

3. Click “Execute SQL Query” button

4. Receive confirmation message “Create Table Successful” after success

5. In the Upload Data page, select table name and data source file to upload.

6. Click “Upload Data” button to start the upload process.

�18

Figure 11: Web interface to create a table with two sensitive fields (A, B)

Figure 12: Confirmation message of table creation success

3.4.2 Web Interface for Query

We introduce the interface for query as follows.

1. Type in the query in the SQL Editor page

2. Click “Execute SQL Query” button

3. Query result will be displayed as in Figure 14

�19

Figure 13: Web interface to upload data to table

Figure 14: Web interface to execute query

4. At “Execution Analysis” section, the query executed at cluster server is displayed

5. Client and server side query execution cost are visualized in charts

Cloud service provider’s view of encrypted sensitive data is illustrated in Figure 16.

�20

Figure 15: Query Performance Analysis Section

Figure 16: Cloud Service Provider’s View of Data

4. Experiments and Results

4.1 Experiment Environment

The prototype of SDB is deployed on a cluster of 10 machines. Every server machine is equipped

with eight Intel(R) Core(TM) i7-3770 CPUs, four 4GB Kingston DDR3 1333MHz RAM, running

on Ubuntu Release 12.04. We use Apache Hadoop 2.4.1, Spark 1.1.0 and Hive 0.12.0, running on

Java 1.6.0. The Hadoop File System is configured to have 3 replication of files and 64 MB data

blocks. Spark executors are configured to have memory of 256 MB. The SDB proxy resides on the

client machine with a single Intel 2.40 GHz Core i5 CPU.

In our experiment, we answer the question of Q1: “How important it is for the secure database

operators to be data interoperable in a cloud database environment?” Second, we address the

questions of Q2: “How much performance overhead is introduced by SDB to protect sensitivity? Is

it practical in query processing?”

We prepare a synthetic table T with two sensitive columns A and B. The values of each column are

generated with a uniform distribution. We execute 3 kinds of queries:

• [Range Query EE Mode] SELECT A, B from T WHERE A < q

• [Range Query EC Mode] SELECT A, B from T WHERE A < B

• [Count Query] SELECT count(A) from T WHERE A < q

The parameter q controls the selectivity of a range query. A smaller q leads to a smaller result size.

We split the total query time into two components. (1) Server Cost: the time taken for the cluster

server to execute rewritten queries. (2) Client Cost: the time taken for SDB proxy to parse, analyse,

rewrite queries and decrypt query results.

�21

4.2 Experiment Result

4.2.1 SDB vs. DBQ

To answer Q1, we compare the performance of SDB with Decrypt-Before-Query Model(DBQ).

DBQ is configured with the same cluster machines at server-side and runs Spark standalone mode

at client side. Since no computation is done on sensitive data at server side, sensitive columns are

encrypted using RSA encryption. For a sample query “SELECT A, B from T WHERE A <

q”, DBQ’s server cost is simply the time taken to ship all the data back to client. DBQ client then

decrypts all sensitive data to execute the range query.

As shown in Figure 17, the query processing time of

DBQ is dominated by client cost, while SDB is

dominated by server cost. We conclude that the client

cost of SDB is significantly less than that of DBQ.

4.2.2 SDB Cost Breakdown

We further break down the components of SDB cost as follows. Figure 18 shows the client/server

cost of a range EC query(on 200K dataset). With increasing selectivity, server cost stays stable,

while client cost increases linearly. Figure 19 shows the further detail of client cost of a range EC

query(on 5K dataset). This shows that decryption cost increases as the number of results to decrypt

increases. Decryption cost is the major contributor to client cost. We observe that the decryption

cost is significant, which may become the bottleneck of query execution when result size is large.

Therefore, improving the performance of decryption is one of the key optimizations to be done in

the future.

�22

Figure 17: DBQ vs. SDB

4.2.3 SDB vs. SparkSQL

To answer Q2, we evaluate the performance of SDB as follows. We first execute the three queries

on SparkSQL directly with all columns stored as plaintext values, bypassing all secure operators.

The time to execute under this scenario is denoted as TSparkSQL. Then we execute the same queries

on encrypted data on SDB, and use TSDB to denote the execution time. The radio TSDB/TSparkSQL

captures the degree to which SDB’s encryption and secure protocol slows down the entire query

processing time.

We observe that SDB introduces a 170 times slow-

down of the query processing time. This is mainly

the result of expensive modular exponent

computation of big integers. In particular, the

secure comparison involves exponent computation

at least three times. This forms another aspect of

future optimization we will focus on.

�23

Figure 18: Client/Server Cost v.s. Selectivity Figure 19: Client Costs v.s. Selectivity

Figure 20: TSDB / TSpark

Finally, Figure 18 shows the client/server cost for the three queries with different data size.

�24

Figure 21 Client/Server Cost vs. Data Size

5. Conclusion and Future Works

The future work of SDB is mainly divided into two parts: secure operator extension and

cryptographic optimization.

5.1 Secure Operator Extension

SDB is designed to support a wide range of query with several secure operators. In Appendix 7.1,

we included the query rewriting rules for the following secure operators which are not fully

implemented yet:

• Secure multiplication, addition, subtraction, comparison in EP mode

• Secure cartesian product

• Secure aggregation function: sum(), avg()

Since the query executor of SDB proxy is implemented with the iterator pattern, SDB proxy can

also be extended to adopt the split client/server execution approach proposed by MONOMI[6]. This

way, in the case of un-supported queries, SDB proxy shall identify the parts of query supported at

cluster server and push them to server as much as possible. Then SDB proxy performs the rest of

the queries.

5.2 Cryptographic Optimization

As we mentioned in the experiment, the decryption cost dominates other costs at client side.

Therefore, it’s crucial to improve the performance of decryption. During the computation of the

item key of the same column but different rows, it can be computed as with

 . Thus it can be viewed as exponential computation with the same base, which can be

optimized by Exponentiation by squaring[7]. To optimize such computation, we first pre-compute a

�25

table of b1, b2, b4, b8, b16 , … To compute b13, we only need to retrieve b1, b2, b8 from table and

multiply them together.

At server side, currently User Defined Functions at server side are all written in Java, whose

modular exponential computation is slow. Instead, we can achieve 4x better performance[8] by

calling native math methods in GMP library, which is written in C++.

Besides, there are studies on secure indexing techniques[9], which groups the value of sensitive

columns into coarse ranges. Such index filtering can be applied before we process a query using our

secure operators.

5.3 Conclusion

In conclusion, we gave a comprehensive description of SDB’s query rewriting and analysis of

performance. By deploying such secret sharing scheme that supports multiple secure operators with

data interoperability, SDB is a query processing system that is both secure and practically efficient.

�26

6. References

[1] Wong, W. K., Kao, B., Cheung, D. W. L., Li, R., & Yiu, S. M. (2014, June). Secure query
processing with data interoperability in a cloud database environment. In Proceedings of the 2014
ACM SIGMOD international conference on Management of data (pp. 1395-1406). ACM.

[2] Gentry, Craig, Shai Halevi, and Nigel P. Smart. "Homomorphic evaluation of the AES circuit."
Advances in Cryptology–CRYPTO 2012. Springer Berlin Heidelberg, 2012. 850-867.

[3] Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2004, June). Order preserving encryption for
numeric data. In Proceedings of the 2004 ACM SIGMOD international conference on Management
of data (pp. 563-574). ACM.

[4] Bajaj, Sumeet, and Radu Sion. "TrustedDB: A Trusted Hardware-Based Database with Privacy
and Data Confidentiality." Knowledge and Data Engineering, IEEE Transactions on 26.3 (2014):
752-765.

[5] Popa, Raluca Ada, et al. "Cryptdb: protecting confidentiality with encrypted query processing."
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. ACM, 2011.

[6] Tu, S., Kaashoek, M. F., Madden, S., & Zeldovich, N. (2013, March). Processing analytical
queries over encrypted data. In Proceedings of the VLDB Endowment (Vol. 6, No. 5, pp. 289-300).
VLDB Endowment.

[7] Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied
cryptography. CRC press.

[8] Scott (2014, February 14). Faster RSA in Java with GMP. Retrieved 19 April, 2015, from https://
corner.squareup.com/2014/02/faster-rsa-jnagmp.html

[9] Hore, B., Mehrotra, S., & Tsudik, G. (2004, August). A privacy-preserving index for range
queries. In Proceedings of the Thirtieth international conference on Very large data bases-Volume
30 (pp. 720-731). VLDB Endowment.  

�27

https://corner.squareup.com/2014/02/faster-rsa-jnagmp.html

7. Appendix

7.1 Rewrite Rules for Other Secure Operators

 Secure operation in EP mode is similar to EC mode that plaintext is treated as a column with

column key <1, 0>.

�28

Rule 8: Rewrite Rule for Multiplication (EP Mode)

Function Explanation

SIES(row_id, CkROW_ID, ρ1, ρ2) Client-side function which decrypts row_id with SIES

sdb_int_add(row_id1, row_id2, n) Server-side row-id addition UDF

sdb_cartprod(Ae, Se2, pA, n) Server-side cartesian product (A ⊗ B as C) UDF

Rule 10: Rewrite Rule for Subtraction (EP Mode)

Rule 9: Rewrite Rule for Addition (EP Mode)

For secure Cartesian product between two tables, we make use of the additive homomorphic

property of row_id’s encryption (SIES) so that T1 JOIN T2 can be decrypted with the new row_id.

To perform secure aggregation function SUM(), we perform a key update operation on target

column A with a special column key < rand, 0 >. Particularly, we insert with a different row_id in

case the result of SUM() is is referred in other nested queries. Finally, The decryption of SUM

ciphertext is handled differently by equation ⟦C⟧ = mz × Ce.

With computed values of SUM() and COUNT(), AVG() can be easily computed by dividing SUM

with COUNT. ⟦C⟧ = mz × Ce / count.

�29

Rule 11: Rewrite Rule for Comparison (EP Mode)

Rule 12: Rewrite Rule for Cartesian Product

Rule 13: Rewrite Rule for SUM()

7.2 Experiment Data

�30

Rule 14: Rewrite Rule for AVG()

5K 200K 400K 600K

SDB Server 4.246 46.934 89.619 132.614

SDB Client 0.082 2.107 4.372 6.366

DBQ Server 0.230 8.93 17.860 26.8

DBQ Client 14.33 510.92 1003.931 1483.658

Figure 17: SELECT A, B from T WHERE A < p, 1% selectivity (seconds)

0.01% 1% 2% 3% 4% 5%

Server Cost 44.239 44.327 45.035 45.502 45.627 45.714

Client Cost 0.071 2.107 4.048 5.791 7.789 9.835

Figure 18: SELECT A, B from T WHERE A < p, on 200K records (seconds)

0.01% 1% 2% 3% 4% 5%

Parse Cost 1 1 1 1 2 1

Analyse Cost 9 10 8 10 14 12

Rewrite Cost 15 14 18 14 16 15

Decrypt Cost 2 56 104 159 215 253

Figure 19: SELECT A, B from T WHERE A < p, on 5K records (milliseconds)

�31

EC	 Range EE Range Count

Server Cost 44827 44867 43728

Client Cost 2107 1786 35

SparkSQL Cost 250 253 254

Figure 20: TSDB vs TSparkSQL on 200K records (milliseconds)

5K 200K 400K 600K

Server Cost 4.633 44.867 84.053 134.601

Client Cost 0.14 1.786 3.414 5.358

Figure 20A: SELECT A, B from T WHERE A < B, 1% selectivity (seconds)

5K 200K 400K 600K

Server Cost 4.164 44.827 85.247 126.248

Client Cost 0.082 2.107 4.372 6.366

Figure 20B: SELECT A, B from T WHERE A < p, 1% selectivity (seconds)

5K 200K 400K 600K

Server Cost 4.45 43.728 82.991 122.435

Client Cost 0.017 0.035 0.021 0.021

Figure 20B: SELECT COUNT(A) from T WHERE A < p, 1% selectivity (seconds)

