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1. Introduction

As Database-as-a-service(DBaaS) such as Amazon Web Service and Microsoft Azure gets more
economically available, security issue in the public cloud becomes one of the major concerns of
data owners(DO). Despite the advantages of computation elasticity and scalability provided by the
cloud service provider(SP), data owner cannot afford the risk of having highly sensitive data
compromised on the cloud, such as clients’ credit card information, as the public cloud may be
vulnerable to privileged database administrators and hackers who may gain accesses to disk-

resident data, or learn from the query results requested by DO.

SDBJ[1] is a secure query processing system that supports data interoperability with secret sharing
encryption scheme, where the output of an operator can be taken as input of another operator, which
leads to a wide range of SQL queries executable by cloud database, without revealing sensitive

information. Besides security, we also demonstrate that SDB is practically efficient.

In this project, we implemented prototype of SDB by query rewriting, on top of Apache Spark.

Specifically, this version of SDB supports the following kind of data interoperable query operations:

Encryption for integer type data
« Secure operators: addition, subtraction, multiplication, comparison
« Secure aggregation function: count

« Web interface for table creation, data uploading and secure querying



2. Project Background and Literature Review

There exist many approaches tackling the challenge of data security. One common way is to encrypt
data before uploading to the cloud server. For instance, Oracle database 11g provides Transparent
Data Encryption to encrypt disk-resident data, as a service of reliable data storage and
administration. However, as the data is not preserved after conventional encryption, query
processing on encrypted data is impossible and the computational power of cloud service provider
is thus lost. To execute queries, DO has to adopt a Decrypt-Before-Query(DBQ) approach, that is,

shipping all ciphertext to DO, decrypting them before executing queries.

On the other hand, fully homomorphic encryption(FHE) techniques are developed to realize
computation on encrypted data. Despite its theoretical significance, such encryption scheme is too
computationally expensive for practical use, not to mention data-intensive queries on the cloud. For
example, a recent implementation of FHE[2] lets us process 180 AES blocks in around 18 minutes

using 3.7GB RAM, whose running time is far from satisfactory for industry use.

Several partially homomorphic encryption schemes are proposed to process particular types of
operations on encrypted data, such as OPES[3](which supports homomorphic comparison
encryption) and RSA(which supports homomorphic multiplication encryption). However, a simple

selection query such as “uni-cost * quantity < budget” cannot be processed on

encrypted data by piecing different encryption functions together.

TrustedDB[4] and Cipherbase are hardware-based secure processors, which use secure hardware

components to store private keys of sensitive data during processing. However, since security is



dependent on the specific hardware, such secure processors cannot scale up as clusters easily and

have to be replaced in case of hardware failure, which makes them not economically scalable.

CryptDBJ[5] is a well-known system for processing encrypted data, using an onion encryption
approach, implemented upon MySQL. CryptDB uses different levels of encryptions to support
different security strength and computational support. For example, it uses RSA to allow equality
check on encrypted data, and uses OPES to achieve ordering preserving comparison. Under
CryptDB, data security is gradually released to a level to achieve appropriate computation
requirement. However, some operators of CryptDB are not secure against chosen plaintext attack,

and it’s capable of a limited range of secure operations.

SDB is a secure query processing system for relational database, using secret sharing encryption
schema. With the data interoperable secure operators supported by secret sharing encryption, SDB
simulates fully homomorphic encryption for sensitive data stored in database, which leads to a wide
range of queries supported by cloud database server. A typical query “SELECT name, salary
+ 1000 FROM employee WHERE salary * 12 > 100000 AND age < 257(with
salary being sensitive), which requires addictive, multiplicative and order-preserving
homomorphism, is supported by SDB. Such query will be executed at cloud server first, afterwards
data owner receives the encrypted query result (decrypted values of salary + 1000 and
plaintext of name) and decrypts it to get the original result. This way, SecureDB turns out to be

both secure and efficient.



3. Project Methodology

3.1 Theoretical background

3.1.1 Encryption Procedure

SDB encrypts sensitive data with a secret sharing method per column. The DO maintains the secret
keys of columns while SP maintains the encrypted value of sensitive columns, plaintext of non-
sensitive columns together with some crypto helper columns.
To encrypt data with secret sharing, the DO first generate two secret numbers, g and n. n is the
product of two big random prime numbers p1, p2, while g is a positive number that is co-prime with
n. We define
n = plp2

¢(n) = (pr —1)(p2 — 1).
Consider a sensitive column A to be encrypted. DO generates a pair of column keys <m, x> for
column A randomly. Also, for each row of column A, DO generates a distinct row-id randomly. We
require that 0 <r, m, x <n.
We use [v] to denote a sensitive value to be encrypted, Ve to denote the ciphertext after encryption,
Vk to denote the item key of [v].

The item key is generated by

(rxz mod ¢(n))

v = gen(r, (m,x)) = mg mod n.

The encrypted value is computed by
ve = E([v], v&) = [v]vy " mod n
To recover plaintext from ciphertext, we compute
[v] = D(ve,vr) = vevy mod n

Row-id is encrypted by addictive homomorphic encryption E().



The encryption procedure is illustrated in Figure 2. It shows how sensitive data is transformed into

encrypted values. To reveal the plaintext, DO only needs to store the column keys, while SP

maintains the bulk encrypted data.
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Figure 2: Encryption procedure (g = 2, n = 35).

3.1.1 Secure Operators

Data interoperability is one of the most important qualities of SDB. Table 1 shows a list of primitive

secure operators implemented in current version of SDB.

Operator  expression
X AXB
+, - A+B,A—-B
= A=B
> A>B
T nS(R)
Count Count(R)

description

vector dot product of two columns of the same table

vector addition/subtraction of two columns of the same table

equality comparison on two columns of the same table and output a
binary column of ‘0’ and ‘1’

ordering comparison on two columns of the same table and output a
binary column of ‘0’ and ‘1’

project table R on attributes specified in an attribute set S ®

count the number of rows in a relation

Table 1: list of primitive secure operators



Notice that SDB supports data operability in different modes. For instance, the X operator, can be
applied in three scenarios: operands are both encrypted(EE Mode); one operand is encrypted, the
other is a constant(EC Mode); one operand is encrypted, the other is plain(EP Mode). Besides row-
id, column R(with encrypted values of random number) and column S(with encrypted values of 1’s)

help achieve secure operation.

Data: Column A, B with column key (ma,z4) and ot el - D b
(mp,zB) :""'”es : 2 c=Ax8, [~ .
Result: C = AB with C’s column key (m¢, zc) ] R : 4| !
Client-protocol: :Lbb ---------------------------- jSPE()AB ___________ C :
zrc = za + zp mod ¢ n); cky =<2, 2> i " e e i
mc = maAmB mod n;( ) i- ckg =<1, 3> :>| Fe 2P I é igj 292 2513 = 384 :
Server-protocol: T TTmmmmmmmTTT TTTTTTTTTTTTTT )
for each row r do
Let ae, be be the encrypted values on A, B; Figure 4: C = Ax B (9 =2, n = 35).
Set encrypted value of C' c. = acbe mod n;
end

Algorithm 1: EE multiplication

The protocol for secure multiplication in EE mode, and an illustrative figure are listed above. To
calculate the secure multiplication between two sensitive columns, DO simply generates a new
column key while SP performs expensive computation on bulk data. The encrypted result is then
sent back to DO and decrypted by the new column key. The proof for correctness and security can

be found in [1].

Key update 1s a helper operator which takes an column A and a target column key <mc, xc> and
output a column C that shares the same plaintext of A with target column key, without revealing
sensitive information. Other protocols of secure operators implemented in SDB are also listed

below.



Data: Column A with column key (ma,z4) and a
constant p
Result: C = pA with C’s column key (m¢, zc)

Client-protocol:

T = Ta;

mc = pma mod n;

Indicate that C’s encrypted column is A’s encrypted
column;

Server-protocol:
Nil
Algorithm 2: EC multiplication

Data: Column A, B with column key (ma,z4) and
(mp, zp)
Result: C = A+ B with C’s column key
Ckc = (mo,xo)
Client-protocol:
Generate random mc, z¢
A’ = k(A, ckc); // DO executes client-protocol
B' = k(B, ckc); // of key update.
Set C’s column key as (mc¢, zc);

Server-protocol:
A’ = k(A, ckc); // SP executes server-protocol
B’ = k(B, ckc); // of key update.
for each row r do

Let a., b, be the encrypted values on A’, B’;

Set encrypted value of C ce = al, + b, mod n;
end

Algorithm 4: EE addition/subtraction

Data: (i) Column A with column key (ma,za); (ii)
target column key (mc, zc)
Result: C = A with C’s column key (m¢,zc)

Client-protocol:

Let (ms, zs) be the column key of S;
p=25"(zc —z4) mod ¢(n);

q =mam%m; " mod n;

Send p, q to SP;

Set C’s column key as (mc, zc);

Server-protocol:
Obtain p, g from DO;
for each row r do
Let ae, se be the encrypted values on A, S;
Set encrypted value of C c. = qaes? mod n;
end
Algorithm 3: Key udpate

Data: Column A, B with column key (ma,z4) and
(mp,zB)
Result: A column of comparison results C: = 0 if
A=B;=1if A> B;return =—-1if A< B

Client-protocol:
Z = R(A— B); // EE addition, EE multiplication
7' = k(Z,(1,0)); // DO executes client-protocol

Server-protocol:

Z = R(A — B); // Corresponding server protocol
Z' = k(Z,(1,0)); // Corresponding server protocol
for each row r do

Let z. be the values on Z';
switch z, do
case =0
| ce =0; // ce is the result of this row
end
case > 0
| ce =1;
end
case < 0
| ce=—1;
end
endsw

end
Algorithm 5: Comparison



3.2 System Architecture

3.2.1 Overall Architecture

SDB is implemented as a software-layer on top of Apache Spark. Apache Spark is a fast and general
engine for large-scale data processing, with in-memory primitives that enhance fast cluster
computing. Apache Hadoop serves as the cluster manager and distributed storage system for very
large data sets to support Spark’s cluster computation. Apache Hive is the distributed data

warehouse to store data.

Spark SQL is a component on top of Spark Core that provides support for structured data and SQL
support. Spark SQL supports User-Defined Functions, which provides a mechanism for extending
the functionality of the cluster database server by adding cryptographic function that can be

evaluated in Spark SQL. This way, SDB’s server protocol is pushed to Spark execution engine and

executed as UDFs.

|
|
Data Owner (DO) ! Service Provider (SP)
|
|
@ Query @' SDB UDFs
@ Rewrite '
Rewritten

Query a Query

Application | SDB Proxy |« !
D Encrypted

Result Result
|
I

Figure 5: Architecture of SDB

The SDB Proxy resides on client side and stores the secret keys in the key store. A typical life cycle
of a query consists of 5 stages:
1. Application submits a query to SDB proxy.

2. SDB proxy parses, analyses and rewrites the query with SDB UDFs.
10



3. SDB proxy submits the rewritten query to Spark SQL for server protocol execution.
4. Spark SQL sends back the encrypted query result to SDB proxy.

5. SDB proxy decrypts the query result and sends it back to application.

The advantages of SDB’s architecture include
1. Performance wise
« Secure operators are implemented as UDF which are executed in the same address space of the
SparkSQL, which leads to less memory copy, less network transfer and no IPC.
2. Engineering wise
« SDB leverages the SparkSQL’s optimizer to optimize the server side queries.
« SDB leverages all the normal operators provided by SparkSQL.
« Machine failures of the working nodes, disk-based processing and parallelism are well taken

care of by Spark.

3.2.2 System Components

Query Parser

SDB proxy is composed of 4 major components: _
Semantic Analyser

1. SDB Query Parser
Query Rewriter

2. SDB Semantic Analyser
Query Executor

3. SDB Query Rewriter

Components of SDB Query Processor

4. SDB Query Executor
Figure 7: Components of SDB Proxy
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SDB Query Parser parses a query string and transforms it into an abstract syntax tree(AST). It is
built based on HiveQL Parser, with additional tokens for column sensitivity declaration. For
example, to declare a table T with sensitive column A and non-sensitive column B, the user has to

submit query “CREATE TABLE T (A int ENC, B int)”, which is transformed into the

N

TOK_CREATETABLE <EOF>

AN

TOK_TABNAME TOK_TABCOLLIST

A int ENC, > // ‘\\\\\\
B int

) T TOK_TABCOL TOK_TABCOL

AN N\

A TOK_INT TOK_ENC B TOK_INT

AST in figure 8.

CREATE TABLE T
(

Figure 8: AST of “CREATE TABLE T (A int ENC, B int)

SDB Semantic Analyzer transforms an AST into a Logical Plan Tree(LPT) as the preparation for
query rewrite. The semantic analyser traverses the AST to construct a LPT, which is easier to
manipulate with, and access the key store to

1. verify whether the reference of queried tables and columns are valid

2. annotate a column with its sensitivity and its column key, if any

SelectStatement

| TOK_FROM | | TOK_SELECT |

| List<TabIeReference>| I List<SeIectItem>|

[ Tok_TABREF | | TOK_SELEXPR |

=> |TabIeReference (product)l |Mu|tiply|
N

FieldLiteral (quantity) FieldLiteral (price)
| product | | TOK_TABLE_COL | | TOK_TABLE_COL | @ColumnKey @ColumnKey

Figure 9: Transformation from AST to LPT
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SDB Query Rewriter rewrites the LPT with secure operator, and constructs a Physical Plan
Tree(PPT). While traversing LPT, every time the rewriter identifies a normal arithmetic operator
involving sensitive columns, it replaces the normal operator with the corresponding secure operator,
based on SDB rewrite rule(discussed in detail in next section). Finally the rewrite construct a

physical plan tree for SDB Executor to execute.

SelectStat t
RemoteSparkSQL

. . SELECT
|L|st<TabIeReference>| |L|st<SeIectItem>| sdb_multi(quantity, price, Jafj123dki3..),

=> row_id
FROM product

SecureMultiply FieldLiteral (row-id)
| TableReference (product) | @ColumnKey @ColumnKey getNext()
/ \ LocalSDBDecrypt
FieldLiteral (quantity) FieldLiteral (price) SecureParam List<ColumnKey>
@ColumnKey @ColumnKey (Jafj123dkj3...) : “ y

Figure 9: Transformation from LPT to PPT

SDB Executor executes the physical query plan and returns the result set. Finally, the executor
executes the physical plan tree which normally splits the execution into two phases. In the first
phase, it sends server-side query and waits for query result. In the second phase, it receives server-
side query and decrypts query result. The decrypted result is then sent back to client application via

connector.

13



3.3 Query Rewriting

We denote ckA = <ma, xa> as the column key for column A, denote kac = <p, ¢> as the client-side
result of key update column A with target column key <mc, xc>. Besides, we use ckz to denote the
special column key <1, 0>.

Function Explanation

rand(p1, p2) Client-side function which generates a random
number co-prime with n, ®(n)

key update client(cka, ckc, cks, p1, p2) Client-side key update which computes kac
decrypt(Ce, ckc, n, g, row_id) Client-side decryption which computes [c]
sdb_mul(Ae, Be, n) Server-side multiplication (A x B) UDF
sdb_add(Ae, Be, Se, kac, kBc, n) Server-side addition (A + B as C) UDF
sdb_compare(Ae, n) Server-side comparison (A > 0) UDF
sdb_key update(Ae, Se, Kac, n) Server-side key update UDF

Table 2: List of functions for query rewriting

3.3.1 Query Rewriting for Multiplication

According to the secret sharing scheme, query rewriting for secure multiplication is straightforward.

Input: SELECT A x Bas C FROM T Input: SELECT A xuas CFROM T
cke = <ma X ms, XA + XB> ckc = <ma x u, xaA>

Output: SELECT row_id, sdb_mul(Ae, Be, 1) AS Ce FROM T Output: SELECT row_id, Ac AS C:FROM T

Rule 1: Rewrite Rule for Multiplication (EE & EC mode)

3.3.2 Query Rewriting for Addition

For secure addition in EE Mode, addition is achieved by applying key update to both A and B so

that they share the same column key.

14



Input: SELECT A + Bas CFROM T
ckc = <rand(p1, p2), rand(p1, p2) >
kac = key_update_client(cka, ckc, cks, p1, p2)
kac = key_update_client(cka, cks, cks, p1, p2)

Output: SELECT row_id, sdb_add(Ae, Be, Se, kac, ksc, n) AS Ce FROM T

Rule 2: Rewrite Rule for Addition (EE mode)

For secure addition in EC mode, the expression A+u can be considered as A+ (Sxu), as the

plaintext of S is 1. Thus an EC addition operation can be done as an EE addition after EC

Multiplication.
Input: SELECT A +uas CFROM T
cksu = <u X ms, Xs>
ckc = <rand(p1, p2), rand(p1, p2) >
kac = key_update_client(cka, ckc, cks, p1, p2)
ksuc = key update_client(cksy, ckc, cks, p1, p2)

Output: SELECT row_id, sdb_add(Ae, Se, Se, Kac, Ksuc, n) as Ce FROM T
Rule 3: Rewrite Rule for Addition (EC mode)

3.3.3 Query Rewriting for Subtraction

For secure subtraction in EE Mode, the expression A-B can be considered as A+ (Bx (-1) ),

similar to addition in EC mode. Based on the modular equation -1 mod n == (n — 1) mod n, we

compute the column key of -B as follows.

Input: SELECT A —Bas CFROM T
ckgi =< (n—1) X ms, XB> // inverse the value of B
ckc = <rand(p1, p2), rand(p1, p2) >
kac = key_update client(cka, ckc, cks, p1, p2)
ksic = key_update_client(cksi, ckc, cks, p1, p2)
Output: SELECT row_id, sdb_add(Ae, Be, Se, kac, ksic, n) AS Cc FROM T

Rule 4: Rewrite Rule for Subtraction (EE mode)

For secure subtraction in EC mode, the expression A-u can be considered as A-Sxu, thus we

simply compute based on the rule of EE subtraction.

15



Input: SELECT A —uas CFROM T

cksu = <u X ms, Xs> // Sxu

cksui = < (n—1) X msy, Xsu> // -(Sxu)

ckc = <rand(p1, p2), rand(p1, p2) >

kac = key_update_client(cka, ckc, cks, p1, p2)
Ksuic = key_update_client(cksui, ckc, cks, p1, p2)

Output: SELECT row_id, sdb_add(Ae, Se, Se, kac, ksuic, n) AS Ce FROM T
Rule 5: Rewrite Rule for Subtraction (EC mode)

3.3.4 Query Rewriting for Comparison

For secure comparison in EC mode, the expression A>B can be considered as (A-B) >0, to ensure
no sensitive information is leaked, we randomize the result by Rx (A-B) >0 at server side so that

the result of A—B is not revealed.

Input: SELECT A FROM T WHERE A > B

cksi = < (n—1) X ms, x> /I inverse the value of B
ckc = <rand(p1, p2), rand(p1, p2) >

kac = key_update_client(cka, ckc, cks, p1, p2)

kaic = key_update_client(cksi, ckc, cks, p1, p2) //[A — B

ckrc = <mg X mc, XB+ Xc > /IR x (A— B)

krez = key_update_client(ckrc, ckz, cks, p1, p2)

Output: SELECT A, row_id FROM T
WHERE sdb_compare(sdb_key_update(sdb_mul(Re, sdb_add(Ae, Be, Se, kac, ksic), n), Se, Krcz, n), n) >0

Rule 6: Rewrite Rule for Comparison (EE mode)

For secure comparison in EC mode, the expression A>u can be considered as (A-Sxu) >0. Notice
that we give the rewriting rule for >, to apply it to = or <, simply swap > with the target equality
operator.

Input: SELECT A FROM T WHERE A >u

cksu = <u X ms, Xs> /] SXu

cksui = < (n—1) X msu, Xsu> /I -(S*u)

ckc = <rand(p1, p2), rand(p1, p2) >

kac = key_update_client(cka, ckc, cks, p1, p2)

ksuic = key_update_client(cksui, ckc, cks, p1, p2) Il A — S*%u
ckrc = <mr X mc, XB + Xc >

krez = key_update_client(ckrc, ckz, cks, p1, p2) /IR %X (A— B)

Output: SELECT A, row_id FROM T
WHERE sdb_compare(sdb_key update(sdb_mul( Re, sdb_add(Ae, Se, Se, Kac, Ksuic)), Se, Krcz, n), n) >0
Rule 7: Rewrite Rule for Comparison (EC mode)
16



Figure 10 shows the rewritten physical plan tree of EE Comparison query.

SelectStatement

| List<TabIeReference>| I WhereClause | | List<SeIectItem>|
" FieldLiteral (A) FieldLiteral (row-id)
| TableReference (T) | |SecurePred|cate (>)| @ColumnKey @ColumnKey
SecureMultiply
@ColumnKey

~ |

FieldLiteral (R)
@ColumnKey

SecureSubtract
@ColumnKey

el

FieldLiteral (A)
@ColumnKey

FieldLiteral (B) _
@ColumnKey SecureParams

Figure 10: Rewritten LPT of SELECT A FROM T WHERE A > B
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3.4 Web Interface

3.4.1 Web Interface for Uploading Data

We introduce the steps to upload a table of sensitive data as follows.
1. Inthe SQL Editor page, type in the CREATE TABLE query

2. Append keyword “ENC” to every sensitive field

3. Click “Execute SQL Query” button

excel random string - Goo: % _ Edit Query | SecureDB x

€ © X [ localhost:9000/sql/edit Q% ® @ I =

Search Database... Q SQL Editor

B8 default Database <

View Data © ] [ SQL Editor o ’ ‘ Upload (V] ‘

Edit Query

CREATE TABLE demo (a INT ENC, b INT ENC, ¢ INT, d VARCHAR(10))

Settings o

Execute SQL Query

Figure 11: Web interface to create a table with two sensitive fields (A, B)

4. Receive confirmation message “Create Table Successful” after success

excel random string - Goo: % ’ Execute Query | SecureDB %

€& - C' | [ localhost:9000/sql/execute?query=CREATE+TABLE+demo+%28a+INT+ENC%2C+b+INT+ENC%2C+c+INT%2C+d+VARCHAR %2810%29%29 w,/:(‘ 9 o M=

Search Database... Q SQ L Ed ito r

BB default Database <

View Data © ] [ SQL Editor (V] ’ ‘ Upload (V) ‘

Settings ©

Query:

CREATE TABLE demo (a INT ENC, b INT ENC, ¢ INT, d VARCHAR(10))

Execute SQL Query

Create Table Successful

Figure 12: Confirmation message of table creation success

5. Inthe Upload Data page, select table name and data source file to upload.

6. Click “Upload Data” button to start the upload process.

18



[EJ excel random string - Goo: % | > Choose Data Source | Sec: %

> C 'D localhost:9000/upload/create i\j\ @9 &K=

Search Database... Q U p I oad Data

BB default Database M
‘ View Data (V] ’ [ SQL Editor (V] j ‘ Upload (V) ‘ Settings ©
demo Table v b
a ENC Choose Data to Upload
b ENC Table Name
® demo
d Data Source File
lineitems_200k_1 Table < /Users/XfaryDesktop/dhgeng.csv ]

Upload Data

Figure 13: Web interface to upload data to table

3.4.2 Web Interface for Query

We introduce the interface for query as follows.
1. Type in the query in the SQL Editor page
2. Click “Execute SQL Query” button

3. Query result will be displayed as in Figure 14

Search Database Q SQL Editor

B8 default Database <

‘ View Data © ‘ ‘ SQL Editor © Settings ©

Query:

SELECT a*b, b - 20, ¢ + 50, d from demo_table where a < 500

Execute SQL Query

Running Time: 5557 ms

L3
Query Result

demo_table.a * demo_table.b demo_table.b - 20 demo_table.c + 50 d
95392 251 189 BBJT
70133 213 313 AMTF
125375 275 284 QCHC
100337 249 324 FETQ
70964 137 229 YJvw

Figure 14: Web interface to execute query
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4. At “Execution Analysis” section, the query executed at cluster server is displayed

5. Client and server side query execution cost are visualized in charts

sdb_add(demo_table.b, de table.s,demo_table.s,"12s85mysx8uletm7ivxyb7h53igghm78nn4cuiwex95y40cy Jpxqtrq8xb7aw

Total number of results: 99

Client Parse Time: 13 ms | Client Analyse Time: 21 ms
Client Rewrite Time: 110 ms [JJ] Client Execute Time: 117 ms
Server Execute Time: 5296 ms

Figure 15: Query Performance Analysis Section

Cloud service provider’s view of encrypted sensitive data is illustrated in Figure 16.

= ~ head mem_dump
50b7ut4gz48pryu21zj3jq291b4b32mpk5ag3bg531cytgvlny6utbcileuddr2gswqzsiq2rpydugctzpuyjlup4vs5y3qtky f6fon2b57760793faf56wddcfwsSop
c12wlb8ry5zuf2tlawlyjp3nw3swuuSh3nbmzc@g4swttxai6lwdkpyil34zkrgb513gfz c9brqgauvebfelrvlc90yup29blae2k8pavibnyynr62z47yroqy6toq
6avx@koy6bad3c5rop5p90jbl3py7rwyaec69gkrowgpmt251gqz@baecwehrhoibrnylytiphubgdqu410hbj57e25jin296ry9r@emwr7ois2fOy9jpfpkt17wmte8
rzébpki45She4bh2 7s81pqulaju3dfw8z@svmnmtvzvigadxnge313vbyh145y97ckm87dqgerljuclgj7bstx8v149f@4zbm8qgs7mcgrrabki3xpe7dnhlkt3iqdvic
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Figure 16: Cloud Service Provider’s View of Data

20



4. Experiments and Results

4.1 Experiment Environment

The prototype of SDB is deployed on a cluster of 10 machines. Every server machine is equipped
with eight Intel(R) Core(TM) 17-3770 CPUs, four 4GB Kingston DDR3 1333MHz RAM, running
on Ubuntu Release 12.04. We use Apache Hadoop 2.4.1, Spark 1.1.0 and Hive 0.12.0, running on
Java 1.6.0. The Hadoop File System is configured to have 3 replication of files and 64 MB data
blocks. Spark executors are configured to have memory of 256 MB. The SDB proxy resides on the

client machine with a single Intel 2.40 GHz Core i5 CPU.

In our experiment, we answer the question of Q1: “How important it is for the secure database
operators to be data interoperable in a cloud database environment?” Second, we address the
questions of Q2: “How much performance overhead is introduced by SDB to protect sensitivity? Is

it practical in query processing?”

We prepare a synthetic table T with two sensitive columns A and B. The values of each column are
generated with a uniform distribution. We execute 3 kinds of queries:

o [Range Query EE Mode] SELECT A, B from T WHERE A < g

o [Range Query EC Mode] SELECT A, B from T WHERE A < B

o [Count Query] SELECT count (A) from T WHERE A < g

The parameter g controls the selectivity of a range query. A smaller q leads to a smaller result size.

We split the total query time into two components. (1) Server Cost: the time taken for the cluster
server to execute rewritten queries. (2) Client Cost: the time taken for SDB proxy to parse, analyse,

rewrite queries and decrypt query results.

21



4.2 Experiment Result

4.2.1 SDB vs. DBQ

To answer Q1, we compare the performance of SDB with Decrypt-Before-Query Model(DBQ).
DBQ is configured with the same cluster machines at server-side and runs Spark standalone mode
at client side. Since no computation is done on sensitive data at server side, sensitive columns are

encrypted using RSA encryption. For a sample query “SELECT A, B from T WHERE A <
g”, DBQ’s server cost is simply the time taken to ship all the data back to client. DBQ client then

decrypts all sensitive data to execute the range query. 1600 o hBq server Cost

Il DBQ Client Cost
Il SDB Server Cost

As shown in Figure 17, the query processing time of B SDB Client Cost
1200

DBQ is dominated by client cost, while SDB is

800
dominated by server cost. We conclude that the client

cost of SDB is significantly less than that of DBQ.

400

Query Processing Time(second)

5K 200K 400K 600K
4.2.2 SDB Cost Breakdown Figure 17: DBQ vs. SDB
We further break down the components of SDB cost as follows. Figure 18 shows the client/server
cost of a range EC query(on 200K dataset). With increasing selectivity, server cost stays stable,
while client cost increases linearly. Figure 19 shows the further detail of client cost of a range EC
query(on 5K dataset). This shows that decryption cost increases as the number of results to decrypt
increases. Decryption cost is the major contributor to client cost. We observe that the decryption
cost 1s significant, which may become the bottleneck of query execution when result size is large.
Therefore, improving the performance of decryption is one of the key optimizations to be done in

the future.
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4.2.3 SDB vs. SparkSQL

To answer 02, we evaluate the performance of SDB as follows. We first execute the three queries

on SparkSQL directly with all columns stored as plaintext values, bypassing all secure operators.

The time to execute under this scenario is denoted as TsparksoL. Then we execute the same queries

on encrypted data on SDB, and use Tspg to denote the execution time. The radio TspB/TsparksQL

captures the degree to which SDB’s encryption and secure protocol slows down the entire query

processing time.

We observe that SDB introduces a 170 times slow- 200

down of the query processing time. This is mainly 150
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Figure 20: TspB / TSpark

future optimization we will focus on.
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Finally, Figure 18 shows the client/server cost for the three queries with different data size.
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5. Conclusion and Future Works

The future work of SDB is mainly divided into two parts: secure operator extension and
cryptographic optimization.

5.1 Secure Operator Extension

SDB is designed to support a wide range of query with several secure operators. In Appendix 7.1,
we included the query rewriting rules for the following secure operators which are not fully
implemented yet:

« Secure multiplication, addition, subtraction, comparison in EP mode

« Secure cartesian product

« Secure aggregation function: sum(), avg()

Since the query executor of SDB proxy is implemented with the iterator pattern, SDB proxy can
also be extended to adopt the split client/server execution approach proposed by MONOMI|[6]. This
way, in the case of un-supported queries, SDB proxy shall identify the parts of query supported at
cluster server and push them to server as much as possible. Then SDB proxy performs the rest of

the queries.

5.2 Cryptographic Optimization

As we mentioned in the experiment, the decryption cost dominates other costs at client side.
Therefore, it’s crucial to improve the performance of decryption. During the computation of the
item key of the same column but different rows, it can be computed as mb” mod n with

b = g* . Thus it can be viewed as exponential computation with the same base, which can be

optimized by Exponentiation by squaring[7]. To optimize such computation, we first pre-compute a
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table of b, b%, b4, b8, b6, ... To compute b!3, we only need to retrieve b!, b2, b® from table and
multiply them together.

At server side, currently User Defined Functions at server side are all written in Java, whose
modular exponential computation is slow. Instead, we can achieve 4x better performance[8] by
calling native math methods in GMP library, which is written in C++.

Besides, there are studies on secure indexing techniques[9], which groups the value of sensitive
columns into coarse ranges. Such index filtering can be applied before we process a query using our

secure operators.

5.3 Conclusion

In conclusion, we gave a comprehensive description of SDB’s query rewriting and analysis of
performance. By deploying such secret sharing scheme that supports multiple secure operators with

data interoperability, SDB is a query processing system that is both secure and practically efficient.

26



6. References

[1] Wong, W. K., Kao, B., Cheung, D. W. L., Li, R., & Yiu, S. M. (2014, June). Secure query
processing with data interoperability in a cloud database environment. /n Proceedings of the 2014
ACM SIGMOD international conference on Management of data (pp. 1395-1406). ACM.

[2] Gentry, Craig, Shai Halevi, and Nigel P. Smart. "Homomorphic evaluation of the AES circuit."
Advances in Cryptology—CRYPTO 2012. Springer Berlin Heidelberg, 2012. 850-867.

[3] Agrawal, R., Kiernan, J., Srikant, R., & Xu, Y. (2004, June). Order preserving encryption for
numeric data. /n Proceedings of the 2004 ACM SIGMOD international conference on Management
of data (pp. 563-574). ACM.

[4] Bajaj, Sumeet, and Radu Sion. "TrustedDB: A Trusted Hardware-Based Database with Privacy
and Data Confidentiality." Knowledge and Data Engineering, IEEE Transactions on 26.3 (2014):
752-765.

[5] Popa, Raluca Ada, et al. "Cryptdb: protecting confidentiality with encrypted query processing."
Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles. ACM, 2011.

[6] Tu, S., Kaashoek, M. F., Madden, S., & Zeldovich, N. (2013, March). Processing analytical
queries over encrypted data. In Proceedings of the VLDB Endowment (Vol. 6, No. 5, pp. 289-300).
VLDB Endowment.

[7] Menezes, A. J., Van Oorschot, P. C., & Vanstone, S. A. (1996). Handbook of applied
cryptography. CRC press.

[8] Scott (2014, February 14). Faster RSA in Java with GMP. Retrieved 19 April, 2015, from https://
corner.squareup.com/2014/02/faster-rsa-jnagmp.html

[9] Hore, B., Mehrotra, S., & Tsudik, G. (2004, August). A privacy-preserving index for range

queries. In Proceedings of the Thirtieth international conference on Very large data bases-Volume
30 (pp. 720-731). VLDB Endowment.

27


https://corner.squareup.com/2014/02/faster-rsa-jnagmp.html

7. Appendix

7.1 Rewrite Rules for Other Secure Operators

Function Explanation
SIES(row_1d, Ckrow 1, p1, p2) Client-side function which decrypts row_id with SIES
sdb_int_add(row idl, row_id2, n) Server-side row-id addition UDF

sdb_cartprod(Ae, Se2, pa, n) Server-side cartesian product (A ® B as C) UDF

Secure operation in EP mode is similar to EC mode that plaintext is treated as a column with

column key <1, 0>.

SELECT A xPas CFROM T

cken = <rand(p1, p2), rand(p1, p2) >
kzen = key update_client(ckz, cken, cks, p1, p2)
ckc = <ma X mpn, XA + XpN >

SELECT row_id, sdb_mul(Ae, sdb_key update(P, Se, kzen, n), n) AS Cc FROM T
Rule 8: Rewrite Rule for Multiplication (EP Mode)

SELECT (A+P)as CFROM T

cken = <rand(p1, p2), rand(p1, p2) >

kzeN = key update_client(ckz, cken, cks, p1, p2)
cken = <rand(p1, p2), rand(p1, p2) >

kac = key update client(cka, ckc, cks, p1, p2)
kenc = key update client(cken, ckc, cks, p1, p2)

SELECT row _id, sdb_add(Ae, sdb_key update(P, Se, kzen, n) ,Se, kac, kenc, n) AS Ce FROM T
Rule 9: Rewrite Rule for Addition (EP Mode)

SELECT (A-P) as C FROM T

cken = <rand(p1, p2), rand(p1, p2) >

kzen = key update client(ckz, cken, cks, p1, p2)

ckpni = < (n—1) X mpn, XpN > // inverse the value of P
ckc = <rand(p1, p2), rand(p1, p2) >

kac = key update_client(cka, ckc, cks, p1, p2)

kenic = key update client(ckeni, ckc, cks, p1, p2)

SELECT row _id, sdb_add(A., sdb_key update(P, S., kzen, n) S, Kac, kenic, n) AS Cc FROM T
Rule 10: Rewrite Rule for Subtraction (EP Mode)
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SELECT * FROM T WHERE A >P
ckpn = <rand(p1, p2), rand(p1, p2) >
kzen = key update client(ckz, cken, cks, p1, p2)
ckeni = < (n—1) X mpn, XpN >
ckc = <rand(p1, p2), rand(p1, p2) >
kac = key_update_client(cka, ckc, cks, p1, p2)
kenic = key update client(ckeni, ckc, cks, p1, p2)
ckrc = <mr X mc, Xg + Xc >
krcz = key update_client(ckrc, ckz, cks, p1, p2)

SELECT * FROM T
WHERE sdb_key update(sdb_mul( Re, sdb_add(A., sdb_key update(P, S., cken, n), Se, ckac, ckenic)), Se, Krcz, n) =/> 0

Rule 11: Rewrite Rule for Comparison (EP Mode)

For secure Cartesian product between two tables, we make use of the additive homomorphic

property of row_id’s encryption (SIES) so that T1 JOIN T2 can be decrypted with the new row _id.

SELECT A, BFROM T1 JOIN T2

pa= (Xs.)"! X xa mod ®(n)
cka' =<ma X (ms2)P4, Xa >
pa=(X.)"! X xs mod ®(n)
ckp' = <ms X (ms2)?, xp >

SELECT sdb_int_add(T1.row_id, T2.row_id, n) as row_id, sdb_cartprod(Ae, Se2, pa, n), sdb_cartprod(Be, Sc1, ps, n) FROM T1 JOIN T2

Rule 12: Rewrite Rule for Cartesian Product
To perform secure aggregation function SUM(), we perform a key update operation on target
column A with a special column key < rand, 0 >. Particularly, we insert with a different row_id in
case the result of SUM() is is referred in other nested queries. Finally, The decryption of SUM

ciphertext is handled differently by equation [[C]] = mz x Ce.

SELECT sum(A) as C FROM T

Cksum = <rand(p1, p2), 0 >

kasum = key update_client(cka, cksum, cks, p1, p2)
ckeni = < (n—1) X mpn, XpN >

row_id = rand(p1, p2)

enc_row_id = SIES(row_id, Ckrow m, p1, p2)

SELECT enc_row_id, sdb_sum(sdb_key update(Ae, Se, kasum, n)) FROM T
Rule 13: Rewrite Rule for SUM()

With computed values of SUM() and COUNT(), AVG() can be easily computed by dividing SUM

with COUNT. [[C]] = m: X Ce/ count.
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SELECT avg(A) as C FROM T

Cksum = <rand(p1, p2), 0 >

kasum = key update_client(cka, cksum, cks, p1, p2)
ckpni = < (n—1) X mpn, XpN>

row_id = rand(p1, p2)

enc_row_id = SIES(row_id, Ckrow m, p1, p2)

SELECT enc _row_id, sdb_sum(sdb_key update(Ae, Se, kasum, n)) as sum, count(Ac) as count FROM T
Rule 14: Rewrite Rule for AVG()

7.2 Experiment Data

5K 200K 400K 600K
SDB Server 4.246 46.934 89.619 132.614
SDB Client 0.082 2.107 4.372 6.366
DBQ Server 0.230 8.93 17.860 26.8
DBQ Client 14.33 510.92 1003.931 1483.658

Figure 17: SELECT A, B from T WHERE A < p, 1% selectivity (seconds)

0.01% 1% 2% 3% 4% 5%
Server Cost 44.239 44.327 45.035 45.502 45.627 45.714
Client Cost 0.071 2.107 4.048 5.791 7.789 9.835

Figure 18: SELECT A, B from T WHERE A < p, on 200K records (seconds)

0.01% 1% 2% 3% 4% 5%
Parse Cost 1 1 1 1 2 1
Analyse Cost 9 10 8 10 14 12
Rewrite Cost 15 14 18 14 16 15
D] 2 56 104 159 215 253

Figure 19: SELECT A, B from T WHERE A < p, on 5K records (milliseconds)
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EC Range EE Range Count

Server Cost 44827 44867 43728

Client Cost 2107 1786 35

SparkSQL Cost 250 253 254

Figure 20: TSDB vs TSparkSQL on 200K records (milliseconds)

5K 200K 400K 600K

Server Cost 4.633 44.867 84.053 134.601

Client Cost 0.14 1.786 3.414 5.358
Figure 20A: SELECT A, B from T WHERE A < B, 1% selectivity (seconds)

5K 200K 400K 600K

Server Cost 4.164 44.827 85.247 126.248

Client Cost 0.082 2.107 4.372 6.366
Figure 20B: SELECT A, B from T WHERE A < p, 1% selectivity (seconds)

5K 200K 400K 600K

Server Cost 4.45 43.728 82.991 122.435

Client Cost 0.017 0.035 0.021 0.021

Figure 20B: SELECT COUNT(A) from T WHERE A < p, 1% selectivity (seconds)
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